Appendix

Killing some S-spaces by a coherent Suslin tree

Teruyuki Yorioka (Shizuoka University)

Joint FWF-JSPS Seminar on *Forcing in Set Theory* 24th January, 2012

Motivation

Theorem (Kunen, Rowbottom, Solovay, etc). MA_{\aleph_1} *implies* \mathcal{K}_2 : Every ccc forcing has property K. **Question** (Todorčević). *Does* \mathcal{K}_2 *imply* MA_{\aleph_1} ?

Theorem (Todorčević). $PID + \mathfrak{p} > \aleph_1$ *implies no S*-spaces. **Question** (Todorčević). *Under* PID, *does no S*-spaces *imply* $\mathfrak{p} > \aleph_1$?

Definition (Todorčević). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin.

Theorem (Farah). $\mathfrak{t} = \aleph_1$ holds in the extension with a Suslin tree.

Proof. Suppose that T is a Suslin tree, and take $\pi : T \to [\omega]^{\aleph_0}$ such that

$$s \leq_T t \to \pi(s) \supseteq^* \pi(t)$$
 and $s \perp_T t \to \pi(s) \cap \pi(t)$ finite.

Then for a generic branch G through T, the set $\{\pi(s) : s \in G\}$ is a \subseteq^* -decreasing sequence which doesn't have a lower bound in $[\omega]^{\aleph_0}$.

Motivation

Theorem (Kunen, Rowbottom, Solovay, etc). MA_{\aleph_1} *implies* \mathcal{K}_2 : Every ccc forcing has property K. **Question** (Todorčević). *Does* \mathcal{K}_2 *imply* MA_{\aleph_1} ?

Theorem (Todorčević). $PID + \mathfrak{p} > \aleph_1$ *implies no S*-spaces. **Question** (Todorčević). *Under* PID, *does no S*-spaces *imply* $\mathfrak{p} > \aleph_1$?

Definition (Todorčević). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin.

Question (Todorčević). Under PFA(S), does S force \mathcal{K}_2 ?

Question (Todorčević). Under PFA(S), does S force no S-spaces?

PFA(S) was introduced to combine many of the consequences of the two contradictory set theoretic axioms, the weak diamond principle, and PFA.

Theorem (Consequences from the weak \diamondsuit). A Suslin tree forces the following. (Farah) $\mathfrak{t} = \aleph_1$.

(Farah) It doesn't hold that all \aleph_1 -dense subsets of the reals are isomorphic. (Larson–Todorčević) Every ladder system has an ununiformized coloring.

(Larson–Todorčević) There are no Q-sets.

(Moore–Hrušák–Džamonja) $\Diamond(\mathbb{R},\mathbb{R},\neq)$ holds.

Theorem (Consequences from PFA). Under PFA(S), S forces the following.

(Todorčević) $2^{\aleph_0} = \aleph_2 = \mathfrak{h} = \operatorname{add}(\mathcal{N}).$

(Farah) The open graph dichotomy.

(Todorčević) The P-ideal dichotomy.

(Todorčević) There are no compact S-spaces.

Theorem. Under PFA(S), S forces the following.

§1. Every forcing with rectangle refining property has precaliber \aleph_1 .

§2. There are no ω_2 -Aronszajn trees.

§3. All Aronszajn trees are club-isomorphic.

§4. The weak club guessing and \mho fail.

Motivation

Theorem (Kunen, Rowbottom, Solovay, etc). MA_{\aleph_1} *implies* \mathcal{K}_2 : Every ccc forcing has property K. **Question** (Todorčević). *Does* \mathcal{K}_2 *imply* MA_{\aleph_1} ?

Theorem (Todorčević). $PID + \mathfrak{p} > \aleph_1$ *implies no S*-spaces. **Question** (Todorčević). *Under* PID, *does no S*-spaces *imply* $\mathfrak{p} > \aleph_1$?

Definition (Todorčević). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin.

Question (Todorčević). Under PFA(S), does S force \mathcal{K}_2 ?

Question (Todorčević). Under PFA(S), does S force no S-spaces?

- **Recall.** An *S*-space is a hereditarily separable (HS) regular space which is not hereditarily Lindelöf, i.e. which has non-Lindelöf subspace.
 - Every S-space has a right-separated subspace of order type ω_1 .
 - A right-separated regular space of order type ω_1 is an *S*-space iff it has no uncountable discrete subspace.
 - Therefore, there are no S-spaces iff every right-separated regular space has an uncountable discrete subspace.

Theorem (Szentmiklóssy). MA_{\aleph_1} implies no compact S-spaces.

Theorem (Todorčević). Under PFA(S), S forces no compact S-spaces.

Recall. A coherent Suslin tree S consists of functions in $\omega^{<\omega_1}$ and closed under finite modifications. That is,

- for any s and t in S, $s \leq_S t$ iff $s \subseteq t$,
- -S is closed under taking initial segments,
- for any s and t in S, $\{\alpha \in \min\{lv(s), lv(t)\}; s(\alpha) \neq t(\alpha)\}\$ is finite, and
- for any $s \in S$ and $t \in \omega^{|v(s)|}$, if $\{\alpha \in |v(s); s(\alpha) \neq t(\alpha)\}$ is finite, then $t \in S$.

For s and $t \in S$ with the same level, define

$$\begin{array}{cccc} \psi_{s,t} & \{u \in S; s \leq_S u\} & \to & \{u \in S; t \leq_S u\} \\ & & & & \\ & & & \\ u & & \mapsto & t \cup (u \upharpoonright [\mathsf{lv}(s), \mathsf{lv}(u))) \end{array}$$

Note that $\psi_{s,t}$ is an isomorphism, and if s, t, u are nodes in S with the same level, then $\psi_{s,t}$, $\psi_{t,u}$ and $\psi_{s,u}$ commute.

Theorem (Todorčević). Under PFA(S), S forces no compact S-spaces.

In fact, he proved that under PFA(S), for any *S*-name for a non-Lindelöf space which is a subspace of some compact countably tight space, there exists a forcing notion which is proper and preserves *S* and adds an *S*-name for an uncountable discrete subspace.

Main Claim. Let $\dot{\tau}$ be an *S*-name for a right-separated HS regular topology of order type ω_1 , and suppose that $\dot{\tau}$ has the following property:

* For any point $\delta \in \omega_1$, *S*-name \dot{U} for an open nbhd of δ , $\alpha \in \omega_1$, $t \in S_\alpha$ and $F \in [S_\alpha]^{<\aleph_0}$, there exists an *S*-name \dot{U}' for an open nbhd of δ such that $t \Vdash_S " \dot{U}' \subseteq \dot{U} "$ and for every $s \in F$,

$$s \Vdash_S$$
" $\psi_{t,s}(\dot{U}')$ is open in $\dot{\tau}$ ".

Then there exists a forcing notion which is proper and preserves S and adds an S-name for an uncountable discrete subspace.

Main Claim. Let $\dot{\tau}$ be an *S*-name for a right-separated HS regular topology of order type ω_1 , and suppose that $\dot{\tau}$ has the following property:

* For any point $\delta \in \omega_1$, *S*-name \dot{U} for an open nbhd of δ , $\alpha \in \omega_1$, $t \in S_\alpha$ and $F \in [S_\alpha]^{<\aleph_0}$, there exists an *S*-name \dot{U}' for an open nbhd of δ such that $t \Vdash_S " \dot{U}' \subseteq \dot{U} "$ and for every $s \in F$,

 $s \Vdash_S " \psi_{t,s}(\dot{U}')$ is open in $\dot{\tau}$ ".

Then there exists a forcing notion which is proper and preserves S and adds an S-name for an uncountable discrete subspace.

In this property, for each $s \in F$, $s = \psi_{t,s}(t)$, and so it is true that

 $s \Vdash_S$ " $\psi_{t,s}(\dot{U}')$ is open in $\psi_{t,s}(\dot{\tau})$ ",

but it may happen that

$$s \not\Vdash_S$$
" $\psi_{t,s}(\dot{U}')$ is open in $\dot{\tau}$ ".

However, for example, if $\dot{\tau}$ is an *S*-name for a topology generated by an open basis in the ground model, then \star is satisfied.

Main Claim. Let $\dot{\tau}$ be an *S*-name for a right-separated HS regular topology of order type ω_1 , and suppose that $\dot{\tau}$ has the following property:

* For any point $\delta \in \omega_1$, *S*-name \dot{U} for an open nbhd of δ , $\alpha \in \omega_1$, $t \in S_\alpha$ and $F \in [S_\alpha]^{<\aleph_0}$, there exists an *S*-name \dot{U}' for an open nbhd of δ such that $t \Vdash_S " \dot{U}' \subseteq \dot{U} "$ and for every $s \in F$,

 $s \Vdash_S " \psi_{t,s}(\dot{U}')$ is open in $\dot{\tau}$ ".

Then there exists a forcing notion which is proper and preserves S and adds an S-name for an uncountable discrete subspace.

Corollary. Under PFA(S), S forces that every right-separated regular topology of order type ω_1 whose topology generated by a basis in the ground model is not HS.

Theorem (Rudin). If there exists a Suslin tree, so is an S-space.

Theorem (Todorčević). PFA implies no S-spaces.

Proof. Suppose that (ω_1, τ) is a right-separated HS regular space of order type ω_1 .

Then for each point $\alpha \in \omega_1$, there exists an open nbhd U_{α} of α such that $\operatorname{cl}_{\tau}(U_{\alpha}) \cap [\alpha + 1, \omega_1) = \emptyset$. Define $U_{\omega_1} = \emptyset$.

We define a forcing notion ${\mathbb P}$ which consists of finite functions p such that

- dom(p) is a finite \in -chain of countable elementary submodels of $H(\aleph_2)$ with τ and $\langle U_{\alpha}; \alpha \in \omega_1 \rangle$, and ran $(p) \subseteq \omega_1 \cup \{\omega_1\}$, and
- for each $M, M' \in \text{dom}(p)$, if $M \in M'$ and $p(M) \neq \omega_1$, then $p(M) \in M' \setminus M$ and $p(M) \notin U_{p(M')}$,

ordered by extensions.

We show that it is proper, which finishes the proof.

<u>Remember</u> (ω_1, τ) is a right-separated HS regular space. $\alpha \in U_{\alpha}$ and $cl_{\tau}(U_{\alpha}) \cap [\alpha + 1, \omega_1) = \emptyset$.

- dom(p) is a finite \in -chain of countable elementary submodels of $H(\aleph_2)$ with τ and $\langle U_{\alpha}; \alpha \in \omega_1 \rangle$, and ran(p) $\subseteq \omega_1$, and
- for each $M, M' \in \text{dom}(p)$, if $M \in M'$ and $p(M) \neq \omega_1$, then $p(M) \in M' \setminus M$ and $p(M) \notin U_{p(M')}$.

Let $N \prec H(\theta)$ be ctbl with τ , $\langle U_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2)$, and $p_0 \in \mathbb{P} \cap N$.

If there are no $\alpha \in \omega_1 \setminus N$ such that $\operatorname{ran}(p_0) \cap U_{\alpha} \neq \emptyset$, then for every $q \leq_{\mathbb{P}} p_0$, $\operatorname{ran}(q) \subseteq N$ holds, hence $p_0 \cup \{ \langle N \cap H(\aleph_2), \omega_1 \rangle \}$ is (N, \mathbb{P}) -generic. This is not an interesting case.

So suppose that there are $\alpha \in \omega_1 \setminus N$ such that $ran(p_0) \cap U_\alpha = \emptyset$.

<u>Remember</u> (ω_1, τ) is a right-separated HS regular space. $\alpha \in U_{\alpha}$ and $cl_{\tau}(U_{\alpha}) \cap [\alpha + 1, \omega_1) = \emptyset$.

- dom(p) is a finite \in -chain of countable elementary submodels of $H(\aleph_2)$ with τ and $\langle U_{\alpha}; \alpha \in \omega_1 \rangle$, and ran(p) $\subseteq \omega_1$, and
- for each $M, M' \in \text{dom}(p)$, if $M \in M'$ and $p(M) \neq \omega_1$, then $p(M) \in M' \setminus M$ and $p(M) \notin U_{p(M')}$.

Let $N \prec H(\theta)$ be ctbl with τ , $\langle U_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2)$, and $p_0 \in \mathbb{P} \cap N$. We show that $p_1 := p_0 \cup \{ \langle N \cap H(\aleph_2), \alpha \rangle \} \in \mathbb{P}$ is (N, \mathbb{P}) -generic.

Let $\mathcal{D} \in N$ be dense open $\subseteq \mathbb{P}$ and $r \in \mathcal{D}$ with $r \leq_{\mathbb{P}} p_1$. Then

 $T := \left\{ \langle q(M) \rangle_{M \in \text{dom}(q) \setminus \text{dom}(r \cap N)}; q \in \mathbb{P} \cap \mathcal{D} \text{ is an end-ext. of } r \cap N \And |q| = |r| \right\}$ is in N and contains $\langle r(M) \rangle_{M \in \text{dom}(r \setminus N)}$. Moreover, by thinking T as a tree which consists of all initial segments of its members, we can take a subtree $T' \subseteq T$ in N such that for every non-terminal member σ of T', $\{\beta \in \omega_1; \sigma \cap \langle \beta \rangle \in T'\}$ is uncountable, and $\langle r(M) \rangle_{M \in \text{dom}(r \setminus N)} \in T'$.

It is possible that there exists $\langle \beta_i; i < |r \setminus N| \rangle \in T' \cap N$ such that for any $i < |r \setminus N|$ and $M \in \text{dom}(r \setminus N)$, $\beta_i \notin U_{r(M)}$.

Let $p_2 \in \mathbb{P} \cap N$ be a witness of $\langle \beta_i; i < |r \setminus N| \rangle \in T' \cap N$ and then $r \cup p_2 \in \mathbb{P}$, $\leq_{\mathbb{P}} p_2, r$.

<u>Remember</u> (ω_1, τ) is a right-separated HS regular space. $\alpha \in U_{\alpha}$ and $cl_{\tau}(U_{\alpha}) \cap [\alpha + 1, \omega_1) = \emptyset$.

- dom(p) is a finite \in -chain of countable elementary submodels of $H(\aleph_2)$ with τ and $\langle U_{\alpha}; \alpha \in \omega_1 \rangle$, and ran(p) $\subseteq \omega_1$, and
- for each $M, M' \in \text{dom}(p)$, if $M \in M'$ and $p(M) \neq \omega_1$, then $p(M) \in M' \setminus M$ and $p(M) \notin U_{p(M')}$.

The following is the crucial point of the proof that "there exists $\langle \beta_i; i < |r \setminus N| \rangle \in T' \cap N$ such that for any $i < |r \setminus N|$ and $M \in \text{dom}(r \setminus N)$, $\beta_i \notin U_{r(M)}$ ".

Claim. For any unctbl $X \subseteq \omega_1$ in N and $F \in [\omega_1 \setminus N]^{\langle \aleph_0}$, there exists $\beta \in X \cap N$ such that for every $\gamma \in F$, $\beta \notin U_{\gamma}$.

Proof. There exists countable $Y \subseteq X$ in N such that $cl_{\tau}(Y) = cl_{\tau}(X)$, and take $\delta \in cl_{\tau}(Y)$ such that for every $\gamma \in F$, $\gamma < \delta$.

Then there exists an open nbhd V of δ such that for every $\gamma \in F$, $cl_{\tau}(U_{\gamma}) \cap V = \emptyset$.

Take $\beta \in Y \cap V$, then we are done.

Let S be a coherent Suslin tree and $\dot{\tau}$ an S-name for a regular topology on ω_1 such that \Vdash_S " $(\omega_1, \dot{\tau})$ is right-separated and HS". For $\alpha \in \omega_1$, take an S-name \dot{U}_{α} s.t. \Vdash_S " $\alpha \in \dot{U}_{\alpha} \in \dot{\tau}$ and $cl_{\dot{\tau}}(\dot{U}_{\alpha}) \cap [\alpha + 1, \omega_1) = \emptyset$ ".

 $\ensuremath{\mathbb{P}}$ consists of finite functions p such that

- $\operatorname{dom}(p)$ is a finite \in -chain of c.e.s. of $H(\aleph_2)$ with $S, \dot{\tau}$ and $\langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$,
- for any $M \in \text{dom}(p)$, $p(M) = \left\langle t_M^p, \alpha_M^p \right\rangle \in (S \setminus M) \times (\omega_1 \setminus M)$,
- for any $M \in \text{dom}(p)$ and $\beta \in \omega_1 \cap M$, t^p_M decides whether $\beta \in \dot{U}_{\alpha^p_M}$ or not,
- for any $M, M' \in \operatorname{dom}(p)$, if $M \in M'$, then $t^p_M, \alpha^p_M \in M'$, and
- for any $M, M' \in \operatorname{dom}(p)$, if $t_M^p <_S t_{M'}^p$, then $t_{M'}^p \Vdash_S \text{``} \alpha_M^p \not\in \dot{U}_{\alpha_{M'}^p}$ ",

ordered by extensions.

Let S be a coherent Suslin tree and $\dot{\tau}$ an S-name for a regular topology on ω_1 such that \Vdash_S " $(\omega_1, \dot{\tau})$ is right-separated and HS". For $\alpha \in \omega_1$, take an S-name \dot{U}_{α} s.t. \Vdash_S " $\alpha \in \dot{U}_{\alpha} \in \dot{\tau}$ and $cl_{\dot{\tau}}(\dot{U}_{\alpha}) \cap [\alpha + 1, \omega_1) = \emptyset$ ".

 $\ensuremath{\mathbb{P}}$ consists of finite functions p such that

- $\operatorname{dom}(p)$ is a finite \in -chain of c.e.s. of $H(\aleph_2)$ with $S, \dot{\tau}$ and $\langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$,
- for any $M \in \operatorname{dom}(p)$, $p(M) = \left\langle t_M^p, \alpha_M^p \right\rangle \in (S \setminus M) \times (\omega_1 \setminus M)$,
- for any $M \in \text{dom}(p)$ and $\beta \in \omega_1 \cap M$, t_M^p decides whether $\beta \in \dot{U}_{\alpha_M^p}$ or not,
- for any $M, M' \in \operatorname{dom}(p)$, if $M \in M'$, then $t^p_M, \alpha^p_M \in M'$, and

- for any
$$M, M' \in \operatorname{dom}(p)$$
, if $t_M^p <_S t_{M'}^p$, then $t_{M'}^p \Vdash_S$ " $\alpha_M^p \not\in \dot{U}_{\alpha_{M'}^p}$ ",

ordered by extensions.

If the following is true, then we can show that \mathbb{P} is proper and preserves S.

• For any ctbl $N \prec H(\theta)$ with $S, \dot{\tau}, \langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2), r \in \mathbb{P}$ with $r \cap N = \emptyset$, $u \in S$ with $lv(t_M^r) \leq lv(u) \forall M \in dom(r)$, and S-name $\dot{X} \in N$ for an unctbl $\subseteq \omega_1$, there exists $\beta \in \omega_1 \cap N$ such that $\forall M \in dom(r), t_M^r \leq_S u \to t_M^r \Vdash_S " \beta \notin \dot{U}_{\alpha_M^r} "$. If the following is true, then we can show that \mathbb{P} is proper and preserves S.

• For any ctbl $N \prec H(\theta)$ with $S, \dot{\tau}, \langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2), r \in \mathbb{P}$ with $r \cap N = \emptyset$, $u \in S$ with $lv(t_M^r) \leq lv(u) \forall M \in dom(r)$, and S-name $\dot{X} \in N$ for an unctbl $\subseteq \omega_1$, there exists $\beta \in \omega_1 \cap N$ such that $\forall M \in dom(r), t_M^r \leq_S u \to t_M^r \Vdash_S " \beta \notin \dot{U}_{\alpha_M^r} "$.

So, Main Claim follows from the next claim.

Claim. Suppose that

* For any point $\delta \in \omega_1$, *S*-name \dot{U} for an open nbhd of δ , $\alpha \in \omega_1$, $t \in S_\alpha$ and $F \in [S_\alpha]^{<\aleph_0}$, there exists an *S*-name \dot{U}' for an open nbhd of δ such that $t \Vdash_S " \dot{U}' \subseteq \dot{U} "$ and for every $s \in F$,

 $s \Vdash_S$ " $\psi_{t,s}(\dot{U}')$ is open in $\dot{\tau}$ ".

Then the above statement • holds.

• For any ctbl $N \prec H(\theta)$ with $S, \dot{\tau}, \langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2), r \in \mathbb{P}$ with $r \cap N = \emptyset$, $u \in S$ with $lv(t_M^r) \leq lv(u) \ \forall M \in dom(r)$, and S-name $\dot{X} \in N$ for an unctbl $\subseteq \omega_1$, there exists $\beta \in \omega_1 \cap N$ such that $\forall M \in \text{dom}(r)$, $t_M^r \leq_S u \to t_M^r \Vdash_S \text{"} \beta \notin \dot{U}_{\alpha_M^r}$ ".

Claim. Suppose that \star For any point $\delta \in \omega_1$, S-name U for an open nbhd of δ , $\alpha \in \omega_1$, $t \in S_{\alpha}$ and $F \in [S_{\alpha}]^{<\aleph_0}$, there exists an S-name \dot{U}' for an open nbhd of δ such that $t \Vdash_S "\dot{U}' \subseteq \dot{U}"$ and for every $s \in F$, $s \Vdash_S "\psi_{t,s}(\dot{U}')$ is open in $\dot{\tau}"$. Then the above statement • holds.

Proof. There are $s \in S \cap N$ and ctbl $Y \in N$ such that $s \leq_S u \upharpoonright (\omega_1 \cap N)$, $s \Vdash_S$ " $Y \subset \dot{X}$ and $cl_{\dot{\tau}}(Y) = cl_{\dot{\tau}}(\dot{X})$ ".

Let $\{M \in \text{dom}(r); t_M^r \leq_S u\} = \{M_{\zeta}; \zeta < k\}$ and take $w_{\zeta} \in S, \zeta < k$, and $\delta \in \omega_1$ such that $t_{M_{\zeta}}^r \leq_S w_{\zeta}$, all w_{ζ} is of same level, $\delta > \alpha_M^r \ \forall M \in \text{dom}(r)$, and $w_0 \Vdash_S$ " $\delta \in \mathsf{Cl}_{\dot{\tau}}(Y)$ ".

By induction on $\zeta < k$, take an S-name \dot{V}_{ζ} such that

- $$\begin{split} &- w_{\zeta} \Vdash_{S} \text{``} \delta \in \dot{V}_{\zeta} \in \dot{\tau} \text{ and } \operatorname{cl}_{\dot{\tau}}(\dot{U}_{\alpha_{M_{\zeta}}^{r}}) \cap \dot{V}_{\zeta} = \emptyset \text{''}, \\ &- \text{ for every } \zeta' \in k, \ w_{\zeta'} \Vdash_{S} \text{``} \psi_{w_{\zeta},w_{\zeta'}}(\dot{V}_{\zeta}) \text{ is open in } \dot{\tau} \text{''}, \text{ and} \end{split}$$

$$- w_{\zeta+1} \Vdash_S " \dot{V}_{\zeta+1} \subseteq \psi_{w_{\zeta},w_{\zeta+1}}(\dot{V}_{\zeta})".$$

• For any ctbl $N \prec H(\theta)$ with $S, \dot{\tau}, \langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2), r \in \mathbb{P}$ with $r \cap N = \emptyset$, $u \in S$ with $lv(t_M^r) \leq lv(u) \forall M \in dom(r)$, and S-name $\dot{X} \in N$ for an unctbl $\subseteq \omega_1$, there exists $\beta \in \omega_1 \cap N$ such that $\forall M \in dom(r), t_M^r \leq_S u \to t_M^r \Vdash_S " \beta \notin \dot{U}_{\alpha_M^r} "$.

Claim. Suppose that \star

Then the above statement • holds.

Proof. There are $s \in S \cap N$ and ctbl $Y \in N$ such that $s \leq_S u \upharpoonright (\omega_1 \cap N)$, $s \Vdash_S " Y \subseteq \dot{X}$ and $cl_{\dot{\tau}}(Y) = cl_{\dot{\tau}}(\dot{X})"$. Let $\{M \in dom(r); t_M^r \leq_S u\} = \{M_{\zeta}; \zeta < k\}$ and take $w_{\zeta} \in S, \zeta < k$, and $\delta \in \omega_1$ such that $t_{M_{\zeta}}^r \leq_S w_{\zeta}$, all w_{ζ} is of same level, $\delta > \alpha_M^r \forall M \in dom(r)$, and $w_0 \Vdash_S " \delta \in cl_{\dot{\tau}}(Y)"$.

By induction on $\zeta < k$, take an S-name \dot{V}_{ζ} such that

$$- w_{\zeta} \Vdash_{S} `` \delta \in \dot{V}_{\zeta} \in \dot{\tau} \text{ and } \operatorname{cl}_{\dot{\tau}}(\dot{U}_{\alpha_{M_{\zeta}}^{r}}) \cap \dot{V}_{\zeta} = \emptyset ",$$

- for every $\zeta' \in k$, $w_{\zeta'} \Vdash_{S} `` \psi_{w_{\zeta},w_{\zeta'}}(\dot{V}_{\zeta})$ is open in $\dot{\tau} "$, and $- w_{\zeta+1} \Vdash_{S} `` \dot{V}_{\zeta+1} \subseteq \psi_{w_{\zeta},w_{\zeta+1}}(\dot{V}_{\zeta}) ".$

Take $\beta \in Y$ and $x \geq_S w_0$ s.t. $x \Vdash_S " \beta \in \psi_{w_{k-1},w_0}(\dot{V}_{k-1})"$. Then for every $\zeta \in k$,

$$\psi_{w_0,w_\zeta}(x) \Vdash_S$$
" $\beta \in \psi_{w_{k-1},w_\zeta}(\dot{V}_{k-1}) \subseteq \dot{V}_{\zeta}$, hence $\beta \not\in \dot{U}_{\alpha_{M_\zeta}^r}$ ".

<u>Remember</u>

Let S be a coherent Suslin tree and $\dot{\tau}$ an S-name for a regular topology on ω_1 such that \Vdash_S " $(\omega_1, \dot{\tau})$ is right-separated and HS".

For each $\alpha \in \omega_1$, take an *S*-name \dot{U}_{α} s.t. \Vdash_S " $\alpha \in \dot{U}_{\alpha} \in \dot{\tau} \text{cl}_{\dot{\tau}}(\dot{U}_{\alpha}) \cap [\alpha + 1, \omega_1) = \emptyset$ ".

 ${\mathbb P}$ consists of finite functions p such that

- $\operatorname{dom}(p)$ is a finite \in -chain of c.e.s. of $H(\aleph_2)$ with $S, \dot{\tau}$ and $\langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$,
- for any $M \in \text{dom}(p)$, $p(M) = \langle t_M^p, \alpha_M^p \rangle \in (S \setminus M) \times (\omega_1 \setminus M)$,
- for any $M \in \text{dom}(p)$ and $\beta \in \omega_1 \cap M$, t^p_M decides whether $\beta \in \dot{U}_{\alpha^p_M}$ or not,
- for any $M, M' \in \text{dom}(p)$, if $M \in M'$, then $t_M^p, \alpha_M^p \in M'$, and

- for any
$$M, M' \in \operatorname{dom}(p)$$
, if $t^p_M <_S t^p_{M'}$, then $t^p_{M'} \Vdash_S$ " $\alpha^p_M \not\in \dot{U}_{\alpha^p_{M'}}$ ",

ordered by extensions.

• For any ctbl $N \prec H(\theta)$ with $S, \dot{\tau}, \langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2), r \in \mathbb{P}$ with $r \cap N = \emptyset$, $u \in S$ with $lv(t_M^r) \leq lv(u) \forall M \in dom(r)$, and S-name $\dot{X} \in N$ for an unctbl $\subseteq \omega_1$, there exists $\beta \in \omega_1 \cap N$ such that $\forall M \in dom(r), t_M^r \leq_S u \to t_M^r \Vdash_S " \beta \notin \dot{U}_{\alpha_M^r} "$.

Claim. Suppose that \star

Then the above statement • holds.

Proof. There are $s \in S \cap N$ and ctbl $Y \in N$ such that $s \leq_S u \upharpoonright (\omega_1 \cap N)$, $s \Vdash_S " Y \subseteq \dot{X}$ and $cl_{\dot{\tau}}(Y) = cl_{\dot{\tau}}(\dot{X})"$. Let $\{M \in dom(r); t_M^r \leq_S u\} = \{M_{\zeta}; \zeta < k\}$ and take $w_{\zeta} \in S, \zeta < k$, and $\delta \in \omega_1$ such that $t_{M_{\zeta}}^r \leq_S w_{\zeta}$, all w_{ζ} is of same level, $\delta > \alpha_M^r \forall M \in dom(r)$, and $w_0 \Vdash_S " \delta \in cl_{\dot{\tau}}(Y)"$.

By induction on $\zeta < k$, take an S-name \dot{V}_{ζ} such that

$$- w_{\zeta} \Vdash_{S} `` \delta \in \dot{V}_{\zeta} \in \dot{\tau} \text{ and } \operatorname{cl}_{\dot{\tau}}(\dot{U}_{\alpha_{M_{\zeta}}^{r}}) \cap \dot{V}_{\zeta} = \emptyset ",$$

- for every $\zeta' \in k$, $w_{\zeta'} \Vdash_{S} `` \psi_{w_{\zeta},w_{\zeta'}}(\dot{V}_{\zeta})$ is open in $\dot{\tau} "$, and $- w_{\zeta+1} \Vdash_{S} `` \dot{V}_{\zeta+1} \subseteq \psi_{w_{\zeta},w_{\zeta+1}}(\dot{V}_{\zeta}) ".$

Take $\beta \in Y$ and $x \geq_S w_0$ s.t. $x \Vdash_S " \beta \in \psi_{w_{k-1},w_0}(\dot{V}_{k-1})"$. Then for every $\zeta \in k$,

$$\psi_{w_0,w_{\zeta}}(x) \Vdash_S " \beta \in \psi_{w_{k-1},w_{\zeta}}(\dot{V}_{k-1}) \subseteq \dot{V}_{\zeta}, \text{ hence } \beta \notin \dot{U}_{\alpha_{M_{\zeta}}^r} ".$$
 Therefore,

• For any ctbl $N \prec H(\theta)$ with $S, \dot{\tau}, \langle \dot{U}_{\alpha}; \alpha \in \omega_1 \rangle$ and $H(\aleph_2), r \in \mathbb{P}$ with $r \cap N = \emptyset$, $u \in S$ with $lv(t_M^r) \leq lv(u) \forall M \in dom(r)$, and S-name $\dot{X} \in N$ for an unctbl $\subseteq \omega_1$, there exists $\beta \in \omega_1 \cap N$ such that $\forall M \in dom(r), t_M^r \leq_S u \to t_M^r \Vdash_S " \beta \notin \dot{U}_{\alpha_M^r} "$.

Claim. Suppose that \star

Then the above statement • holds.

Proof. There are $s \in S \cap N$ and ctbl $Y \in N$ such that $s \leq_S u \upharpoonright (\omega_1 \cap N)$, $s \Vdash_S " Y \subseteq \dot{X}$ and $cl_{\dot{\tau}}(Y) = cl_{\dot{\tau}}(\dot{X})"$. Let $\{M \in dom(r); t_M^r \leq_S u\} = \{M_{\zeta}; \zeta < k\}$ and take $w_{\zeta} \in S, \zeta < k$, and $\delta \in \omega_1$ such that $t_{M_{\zeta}}^r \leq_S w_{\zeta}$, all w_{ζ} is of same level, $\delta > \alpha_M^r \forall M \in dom(r)$, and $w_0 \Vdash_S " \delta \in cl_{\dot{\tau}}(Y)"$.

By induction on $\zeta < k$, take an S-name \dot{V}_{ζ} such that

$$- w_{\zeta} \Vdash_{S} `` \delta \in \dot{V}_{\zeta} \in \dot{\tau} \text{ and } \operatorname{cl}_{\dot{\tau}}(\dot{U}_{\alpha_{M_{\zeta}}^{r}}) \cap \dot{V}_{\zeta} = \emptyset ",$$

- for every $\zeta' \in k$, $w_{\zeta'} \Vdash_{S} `` \psi_{w_{\zeta},w_{\zeta'}}(\dot{V}_{\zeta})$ is open in $\dot{\tau} "$, and $- w_{\zeta+1} \Vdash_{S} `` \dot{V}_{\zeta+1} \subseteq \psi_{w_{\zeta},w_{\zeta+1}}(\dot{V}_{\zeta}) ".$

Take $\beta \in Y$ and $x \geq_S w_0$ s.t. $x \Vdash_S " \beta \in \psi_{w_{k-1},w_0}(\dot{V}_{k-1})"$. Then for every $\zeta \in k$,

$$t_{M_{\zeta}}^{r} \Vdash_{S} \text{``} \beta \not\in \dot{U}_{\alpha_{M_{\zeta}}^{r}} \text{''}.$$